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The repository for the source of this document is here.

This is Project One from Udacity’s Machine Learning Nanodegree program. It uses the UCI Boston Housing
Dataset to build a model to predict prices for homes in the suburbs of Boston. The project begins with an ex-
ploration of the data to understand the feature and target variables, this is followed by the selection of a performance
metric for the model, an analysis of how the model performed, and finally the model is applied to a hypothetical
client’s house to predict a value for the house.

1 Statistical Analysis and Data Exploration

This section is an exploratory analysis of the Boston Housing data which will introduce the data and some changes
that I made, summarize the median-value data, then look at the features to make an initial hypothesis about the value
of the client’s home.

1.1 The Data

The data was taken from the sklearn.load_boston function (sklearn cites the UCI Machine Learning Repository as
their source for the data). The data gives values for various features of different suburbs of Boston as well as the

https://github.com/necromuralist/boston_housing
https://archive.ics.uci.edu/ml/datasets/Housing
https://archive.ics.uci.edu/ml/datasets/Housing
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
http://archive.ics.uci.edu/ml/datasets/Housing


median-value for homes in each suburb. The features were chosen to reflect various aspects believed to influence
the price of houses including the structure of the house (age and spaciousness), the quality of the neighborhood,
transportation access to employment centers and highways, and pollution.

There are 14 variables in the data set (13 features and the median-value target). Here is the description of the data
variables provided by sklearn.

Table 1: Attribute Information (in order)

Variable Name Description

CRIM per capita crime rate by town
ZN proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS proportion of non-retail business acres per town
CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
NOX nitric oxides concentration (parts per 10 million)
RM average number of rooms per dwelling
AGE proportion of owner-occupied units built prior to 1940
DIS weighted distances to five Boston employment centers
RAD index of accessibility to radial highways
TAX full-value property-tax rate per $10,000
PTRATIO pupil-teacher ratio by town
B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
LSTAT % lower status of the population
MEDV Median value of owner-occupied homes in $1000’s

Note: The data comes from the 1970 U.S. Census and the median-values have not been inflation-adjusted.

Cleaning the Data

There are no missing data points but the odd variable names are sometimes confusing so I’m going to expand them
to full variable names.

Table 2: Variable Aliases

Original Variable New Variable

CRIM crime_rate
ZN large_lots
INDUS industrial
CHAS charles_river
NOX nitric_oxide
RM rooms
AGE old_houses
DIS distances
RAD highway_access
TAX property_taxes
PTRATIO pupil_teacher_ratio
B proportion_blacks
LSTAT lower_status



1.2 Median Value

The target variable for this data-set is the median-value of houses within a given suburb. After presenting some
summary statistics for the median-value I’ll make some plots to get a sense of the shape of the data.

Table 3: Boston
Housing
median-value
statistics (in
$1000’s)

Item Value

count 506
mean 22.53
std 9.20
min 5.00
25% 17.02
50% 21.20
75% 25.00
max 50.00
IQR 7.975

Outlier Check

Comparing the mean (22.53) and the median (21.2) it looks like the distribution might be right-skewed. This is more
obvious looking at distribution plots below, but I’ll also do an outlier check here using the traditional Q1−1.5×I QR
for low outliers and Q3+ 1.5× I QR for the higher outliers to see how many there might be.

Table 4: Outlier Count

Description Value

Low Outlier Limit (LOL) 5.06
LOL - min 0.06
Upper Outlier Limit (UOL) 36.96
max - UOL 13.04
Low Outlier Count 2
High Outlier Count 38

There aren’t an excessive number of outliers - about 8% of the median-values are above the upper outlier limit (UOL)
and less than 1% below the lower-outlier limit. The difference between the maximum value of 50 and the UOL is
13.04, however, which is almost as large as the difference between the UOL and the median (15.76) so there might
be an undue influence from the upper values if parametric statistics are used.
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The KDE/histogram and box-plot seem to confirm what was shown in the section on outliers, which is that there
are some unusually high median-values in the data.
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Boston Housing Median Values (QQ-Plot)

The QQ-Plot shows that the distribution is initially fairly normal but the upper-third seems to come from a different
distribution than the lower two-thirds.
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Looking at the distribution (histogram and KDE plot) and box-plot the median-values for the homes appear to be
right-skewed. The CDF shows that about 90% of the homes are $35,000 or less (the 90th percentile for median-value
is 34.8) and that there’s a change in the spread of the data around $25,000. The qq-plot and the other plots show that
the median-values aren’t normally distributed.

1.3 Possibly Significant Features

To get an idea of how the features are related to the median-value, I’ll plot some linear-regressions.
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Looking at the plots, the three features that I think are the most significant are lower_status (LSTAT), nitric_oxide
(NOX), and rooms (RM). The lower_status variable is the percent of the population of the town that is of ‘lower status’
which is defined in this case as being an adult with less than a ninth-grade education or a male worker that is classified



as a laborer. The nitric_oxide variable represents the annual average parts per million of nitric-oxide measured in
the air and is thus a stand-in for pollution. rooms is the average number of rooms per dwelling, representing the
spaciousness of houses in the suburb (Harrison and Rubinfeld, 1978).

1.4 The Client

As I mentioned previously, the main goal of this project is to create a model to predict the house price for a client.
Here are the client’s values.

Table 5: Client Values

Feature Value

crime_rate 11.95
large_lots 0.0
industrial 18.1
charles_river 0
nitric_oxide 0.659
rooms 5.609
old_houses 90.0
distances 1.385
highway_access 24
property_taxes 680.0
pupil_teacher_ratio 20.2
proportion_blacks 332.09
lower_status 12.13

The Client’s Significant Features

Now a comparison of the client’s values for the three features that I hypothesized might be the most significant along
with the values from the data-set.

Table 6: Client Significant Features

Variable Client Value Boston Q1 Boston Median Boston Q3

lower_status 12.13 6.95 11.36 16.96
nitric_oxide 0.66 0.45 0.54 0.62
rooms 5.61 5.89 6.21 6.62

Comparing the values I guessed would be significant for the client to the median-values for the data set as a whole
shows that the client has a higher ratio of lower-status adults, more pollution and fewer rooms than the median
suburbs so I would expect that the predicted value will be lower than the median.

2 Evaluating Model Performance

Here I’ll discuss splitting the data for training and testing, the performance metric I chose, the algorithm used for
the modeling and how the hyper-parameters for the model were chosen.



2.1 Splitting the Data

First a function named shuffle_split_data was created that acts as an alias for the train_test_split function from sklearn.
The main difference is that the ordering of the data-sets is changed from both x’s followed by both y’s to both training
sets followed by both testing sets. In this case a 70% training data, 30% test data split was used.

We split the data into training and testing subsets so that we can assess the model using a different data-set than
what it was trained on, thus reducing the likelihood of overfitting the model to the training data and increasing the
likelihood that it will generalize to other data.

2.2 Choosing a Performance Metric

There are several possible regression metrics to use, but I chose Mean Squared Error as the most appropriate perfor-
mance metric for predicting housing prices because we are predicting a numeric value (a regression problem) and
while Mean Absolute Error, Median Absolute Error, Explained Variance Score, or r2_score could also be used, I wanted
a metric that would be based on the errors in the model and the MSE emphasizes larger errors more and so I felt it
would be preferable.

The Mean Squared Error is an average of the squared differences between predicted values and the actual values.

M SE(y, ŷ) =
1
n

n−1
∑

i=0

(yi − ŷi )
2

2.3 DecisionTreeRegressor

The model was built using sklearn’s DecisionTreeRegressor, a non-parametric, tree-based algorithm (using the Clas-
sification and Regression Trees (CART) tree algorithm).

2.4 Grid Search

A grid search was used to find the optimal parameters (tree depth) for the DecisionTreeRegressor. The GridSearchCV
algorithm exhaustively works through the parameters it is given to find the parameters that create the best model
using cross-validation. Because it is exhaustive it is appropriate when the model-creation is not excessively compu-
tationally intensive, otherwise its run-time might be infeasible.

Cross-Validation

As mentioned, GridSearchCV uses cross-validation to find the optimal parameters for a model. Cross-validation is a
method of testing a model by partitioning the data into subsets, with each subset taking a turn as the test set while
the data not being used as a test-set is used as the training set. This allows the model to be tested against all the data-
points, rather than having some data reserved exclusively as training data and the remainder exclusively as testing
data.

Because grid-search attempts to find the optimal parameters for a model, it’s advantageous to use the same training
and testing data in each case (case meaning a particular permutation of the parameters) so that the comparisons are
equitable. One could simply perform an initial train-validation-test split and use this throughout the grid search,
but this then risks the possibility that there was something in the initial split that will bias the outcome. By using all
the partitions of the data as both test and training data, as cross-validation does, the chance of a bias in the splitting
is reduced and at the same time all the parameter permutations are given the same data to be tested against.

In this case I used k=10 for the k-fold cross validation that the GridSearchCV uses.

http://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart
http://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart
http://scikit-learn.org/stable/modules/grid_search.html


3 Analyzing Model Performance

The two methods used here for analyzing how the model is performing with the data are Learning Curves and a
Model Complexity plot.

3.1 Learning Curves

The Learning Curves show how a model’s performance changes as it is given more data. In this case four max_depth
sizes were chosen for comparison.
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Decision Tree Regressor Learning Performances

Looking at the model with max-depth of 3, as the size of the training set increases, the training error gradually
increases. The testing error initially decreases, then seems to more or less stabilize.

The training and testing plots for the model with max-depth 1 move toward convergence with an error near 50,
indicating a high bias (the model is too simple, and the additional data isn’t improving the generalization of the
model).

For the model with max-depth 10, the curves haven’t converged, and the training error remains near 0, indicating
that it suffers from high variance, and should be improved with more data.



3.2 Model Complexity

The Model Complexity plot allows us to see how the model’s performance changes as the max-depth is increased.
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As max-depth increases the training error improves, while the testing error decreases up until a depth of 5 and then
begins a slight increase as the depth is increased. Based on this I would say that the max-depth of 5 created the
model that best generalized the data set, as it minimized the testing error, while the models with greater max-depth
parameters likely overfitted the training data.

4 Model Prediction

To find the ‘best’ model I ran the fit_model function 1,000 times and took the best_params_ (max-depth) and
best_score_ (negative MSE) for each trial.
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Table 7: Parameter
Counts

Max-Depth Count

4 315
5 190
7 166
6 136
8 111
9 82

Table 8: Median Scores

Max-Depth Median Score

4 -34.44
5 -32.54
6 -32.55
7 -32.83
8 -32.80
9 -32.94
10 -33.54



Table 9: Max Scores

Max-Depth Max Score

4 -34.35
5 -30.46
6 -30.67
7 -30.88
8 -30.93
9 -30.79
10 -31.32

Note: Since the GridSearchCV normally tries to maximize the output of the scoring-function, but the goal in this
case was to minimize it, the scores are negations of the MSE, thus the higher the score, the lower the MSE.

While a max-depth of 4 was the most common best-parameter, the max-depth of 5 was the median max-depth, had
the highest median score, and had the highest overall score, so I will say that the optimal max_depth parameter is 5.
This is in line with what I had guessed, based on the Complexity Performance plot.

4.1 Predicting the Client’s Price

Using the model that had the lowest MSE (30.46) out of the 1,000 generated, I then made a prediction for the price
of the client’s house.

Table 10: Predicted Price

Predicted value of client’s home $20,967.76
Difference between median and predicted $232.24

My three chosen features (lower_status, nitric_oxide, and rooms) seemed to indicate that the client’s house might be
a lower-valued house, and the predicted value was about $232 less than the median median-value, so it appears that
our model predicts that the client has a below-median-value house.

Confidence Interval

Although this isn’t an inferential analysis, I calculated the 95% Confidence Interval for the median-value so that I
would have a range to compare the prediction to. Since the data isn’t symmetric I used a bootstrapped confidence
interval (bias-corrected and accelerated (BCA)) of the median instead of one based on the standard error and found
95% CI [20.40, 21.75].

Our prediction for the client’s house falls within a 95% confidence interval for the median, so although I predicted
that it would be below the median, there’s insufficient evidence to conclude that it differs from the median house
price.

4.2 Assessing the Model

I think that this model seems reasonable for the given data (Boston Suburbs in 1970), but I think that I might be
hesitant to predict the value for a specific house using it, given that we are using aggregate-values for entire suburbs,
not values for individual houses. I would also think that separating out the upper-class houses would give a better
model for certain clients, given the right-skew of the data. Also, the median MSE for the best model was ~32 so



taking the square root of this gives an ‘average’ error of about $5,700, which seems fairly high, given the low median-
values for the houses. I think that the model gives a useful ball-park-figure estimate, but I think I’d have to qualify the
certainty of prediction for future clients, noting also the age of the data and not extrapolating much beyond 1970.
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6 Software

Here are some auto-generated descriptions of some of the software used. train_test_split, mean_squared_error, Deci-
sionTreeRegressor, and GridSearchCV are from sklearn, the rest was part of this project.

6.1 Evaluating Model Performance

Splitting the Data

shuffle_split_data(X, y[, test_size, ...]) Shuffles and splits data into training and testing subsets

boston_housing.evaluating_model_performance.shuffle_split_data

boston_housing.evaluating_model_performance.shuffle_split_data(X, y, test_size=0.3, ran-
dom_state=0)

Shuffles and splits data into training and testing subsets

Param

• X: feature array

• y: target array

• test_size: fraction of data to use for testing

• random_state: seed for the random number generator

Returns x-train, y-train, x-test, y-test

train_test_split(*arrays, **options) Split arrays or matrices into random train and test subsets

sklearn.cross_validation.train_test_split

sklearn.cross_validation.train_test_split(*arrays, **options)
Split arrays or matrices into random train and test subsets

Quick utility that wraps input validation and next(iter(ShuffleSplit(n_samples))) and application to
input data into a single call for splitting (and optionally subsampling) data in a oneliner.

http://archive.ics.uci.edu/ml


Read more in the User Guide.

*arrays : sequence of indexables with same length / shape[0]

allowed inputs are lists, numpy arrays, scipy-sparse matrices or pandas dataframes.

New in version 0.16: preserves input type instead of always casting to numpy array.

test_size [float, int, or None (default is None)] If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the test split. If int, represents the absolute number of test samples.
If None, the value is automatically set to the complement of the train size. If train size is also None, test
size is set to 0.25.

train_size [float, int, or None (default is None)] If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the train split. If int, represents the absolute number of train
samples. If None, the value is automatically set to the complement of the test size.

random_state [int or RandomState] Pseudo-random number generator state used for random sampling.

stratify [array-like or None (default is None)] If not None, data is split in a stratified fashion, using this as
the labels array.

New in version 0.17: stratify splitting

splitting [list, length = 2 * len(arrays),] List containing train-test split of inputs.

New in version 0.16: Output type is the same as the input type.

>>> import numpy as np
>>> from sklearn.cross_validation import train_test_split
>>> X, y = np.arange(10).reshape((5, 2)), range(5)
>>> X
array([[0, 1],

[2, 3],
[4, 5],
[6, 7],
[8, 9]])

>>> list(y)
[0, 1, 2, 3, 4]

>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.33, random_state=42)
...
>>> X_train
array([[4, 5],

[0, 1],
[6, 7]])

>>> y_train
[2, 0, 3]
>>> X_test
array([[2, 3],

[8, 9]])
>>> y_test
[1, 4]

The Performance Metric



performance_metric(y_true, y_predict) Calculates total error between true and predicted values

boston_housing.evaluating_model_performance.performance_metric

boston_housing.evaluating_model_performance.performance_metric(y_true, y_predict)
Calculates total error between true and predicted values

Param

• y_true: array of target values

• y_predict: array of values the model predicted

Returns mean_squared_error for the prediction

mean_squared_error(y_true, y_pred[, ...]) Mean squared error regression loss

sklearn.metrics.mean_squared_error

sklearn.metrics.mean_squared_error(y_true, y_pred, sample_weight=None, multiout-
put=’uniform_average’)

Mean squared error regression loss

Read more in the User Guide.

y_true [array-like of shape = (n_samples) or (n_samples, n_outputs)] Ground truth (correct) target values.

y_pred [array-like of shape = (n_samples) or (n_samples, n_outputs)] Estimated target values.

sample_weight [array-like of shape = (n_samples), optional] Sample weights.

multioutput [string in [’raw_values’, ‘uniform_average’]] or array-like of shape (n_outputs) Defines aggre-
gating of multiple output values. Array-like value defines weights used to average errors.

‘raw_values’ : Returns a full set of errors in case of multioutput input.

‘uniform_average’ : Errors of all outputs are averaged with uniform weight.

loss [float or ndarray of floats]A non-negative floating point value (the best value is 0.0), or an array of floating
point values, one for each individual target.

>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [[0.5, 1],[-1, 1],[7, -6]]
>>> y_pred = [[0, 2],[-1, 2],[8, -5]]
>>> mean_squared_error(y_true, y_pred)
0.708...
>>> mean_squared_error(y_true, y_pred, multioutput='raw_values')
...
array([ 0.416..., 1. ])
>>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7])
...
0.824...



Decision Tree Regressor

fit_model(X, y[, k, n_jobs]) Tunes a decision tree regressor model using GridSearchCV

boston_housing.evaluating_model_performance.fit_model

boston_housing.evaluating_model_performance.fit_model(X, y, k=10, n_jobs=1)
Tunes a decision tree regressor model using GridSearchCV

Param

• X: the input data

• y: target labels y

• k: number of cross-validation folds

• n_jobs: number of parallel jobs to run

Returns the optimal model

DecisionTreeRegressor([criterion, splitter, ...]) A decision tree regressor.

sklearn.tree.DecisionTreeRegressor

class sklearn.tree.DecisionTreeRegressor(criterion=’mse’, splitter=’best’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=None, ran-
dom_state=None, max_leaf_nodes=None, presort=False)

A decision tree regressor.

Read more in the User Guide.

criterion [string, optional (default=”mse”)] The function to measure the quality of a split. The only sup-
ported criterion is “mse” for the mean squared error, which is equal to variance reduction as feature
selection criterion.

splitter [string, optional (default=”best”)] The strategy used to choose the split at each node. Supported
strategies are “best” to choose the best split and “random” to choose the best random split.

max_features [int, float, string or None, optional (default=None)]

The number of features to consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a percentage and int(max_features * n_features) features are consid-
ered at each split.

• If “auto”, then max_features=n_features.

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node samples is found,
even if it requires to effectively inspect more than max_features features.



max_depth [int or None, optional (default=None)]The maximum depth of the tree. If None, then nodes are
expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored
if max_leaf_nodes is not None.

min_samples_split [int, optional (default=2)]The minimum number of samples required to split an internal
node.

min_samples_leaf [int, optional (default=1)]The minimum number of samples required to be at a leaf node.

min_weight_fraction_leaf [float, optional (default=0.)] The minimum weighted fraction of the input sam-
ples required to be at a leaf node.

max_leaf_nodes [int or None, optional (default=None)] Grow a tree with max_leaf_nodes in best-first
fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf
nodes. If not None then max_depth will be ignored.

random_state [int, RandomState instance or None, optional (default=None)] If int, random_state is the seed
used by the random number generator; If RandomState instance, random_state is the random number
generator; If None, the random number generator is the RandomState instance used by np.random.

presort [bool, optional (default=False)]Whether to presort the data to speed up the finding of best splits in
fitting. For the default settings of a decision tree on large datasets, setting this to true may slow down
the training process. When using either a smaller dataset or a restricted depth, this may speed up the
training.

feature_importances_ [array of shape = [n_features]] The feature importances. The higher, the more im-
portant the feature. The importance of a feature is computed as the (normalized) total reduction of the
criterion brought by that feature. It is also known as the Gini importance 4.

max_features_ [int,] The inferred value of max_features.

n_features_ [int] The number of features when fit is performed.

n_outputs_ [int] The number of outputs when fit is performed.

tree_ [Tree object] The underlying Tree object.

DecisionTreeClassifier

>>> from sklearn.datasets import load_boston
>>> from sklearn.cross_validation import cross_val_score
>>> from sklearn.tree import DecisionTreeRegressor
>>> boston = load_boston()
>>> regressor = DecisionTreeRegressor(random_state=0)
>>> cross_val_score(regressor, boston.data, boston.target, cv=10)
...
...
array([ 0.61..., 0.57..., -0.34..., 0.41..., 0.75...,

0.07..., 0.29..., 0.33..., -1.42..., -1.77...])

__init__(criterion=’mse’, splitter=’best’, max_depth=None, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=None, random_state=None,
max_leaf_nodes=None, presort=False)

Methods

4 L. Breiman, and A. Cutler, “Random Forests”, http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm


__init__([criterion, splitter, max_depth, ...])
apply(X[, check_input]) Returns the index of the leaf that each sample is predicted as.
fit(X, y[, sample_weight, check_input, ...]) Build a decision tree from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X[, check_input]) Predict class or regression value for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

Attributes

feature_importances_ Return the feature importances.

Grid Search

GridSearchCV(estimator, param_grid[, ...]) Exhaustive search over specified parameter values for an estimator.

sklearn.grid_search.GridSearchCV

class sklearn.grid_search.GridSearchCV(estimator, param_grid, scoring=None, fit_params=None,
n_jobs=1, iid=True, refit=True, cv=None, verbose=0,
pre_dispatch=‘2*n_jobs’, error_score=’raise’)

Exhaustive search over specified parameter values for an estimator.

Important members are fit, predict.

GridSearchCV implements a “fit” and a “score” method. It also implements “predict”, “predict_proba”, “de-
cision_function”, “transform” and “inverse_transform” if they are implemented in the estimator used.

The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over
a parameter grid.

Read more in the User Guide.

estimator [estimator object.] A object of that type is instantiated for each grid point. This is assumed to
implement the scikit-learn estimator interface. Either estimator needs to provide a score function, or
scoring must be passed.

param_grid [dict or list of dictionaries] Dictionary with parameters names (string) as keys and lists of pa-
rameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each
dictionary in the list are explored. This enables searching over any sequence of parameter settings.

scoring [string, callable or None, default=None] A string (see model evaluation documentation) or a scorer
callable object / function with signature scorer(estimator, X, y). If None, the score method of the
estimator is used.

fit_params [dict, optional] Parameters to pass to the fit method.

n_jobs [int, default=1]Number of jobs to run in parallel.

Changed in version 0.17: Upgraded to joblib 0.9.3.



pre_dispatch [int, or string, optional] Controls the number of jobs that get dispatched during parallel exe-
cution. Reducing this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

• None, in which case all the jobs are immediately created and spawned. Use this for lightweight and
fast-running jobs, to avoid delays due to on-demand spawning of the jobs

• An int, giving the exact number of total jobs that are spawned

• A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

iid [boolean, default=True] If True, the data is assumed to be identically distributed across the folds, and the
loss minimized is the total loss per sample, and not the mean loss across the folds.

cv [int, cross-validation generator or an iterable, optional]Determines the cross-validation splitting strategy.
Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs, if y is binary or multiclass, StratifiedKFold used. If the estimator is a clas-
sifier or if y is neither binary nor multiclass, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

refit [boolean, default=True] Refit the best estimator with the entire dataset. If “False”, it is impossible to
make predictions using this GridSearchCV instance after fitting.

verbose [integer] Controls the verbosity: the higher, the more messages.

error_score [‘raise’ (default) or numeric] Value to assign to the score if an error occurs in estimator fitting. If
set to ‘raise’, the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter
does not affect the refit step, which will always raise the error.

>>> from sklearn import svm, grid_search, datasets
>>> iris = datasets.load_iris()
>>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
>>> svr = svm.SVC()
>>> clf = grid_search.GridSearchCV(svr, parameters)
>>> clf.fit(iris.data, iris.target)
...
GridSearchCV(cv=None, error_score=...,

estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=...,
decision_function_shape=None, degree=..., gamma=...,
kernel='rbf', max_iter=-1, probability=False,
random_state=None, shrinking=True, tol=...,
verbose=False),

fit_params={}, iid=..., n_jobs=1,
param_grid=..., pre_dispatch=..., refit=...,
scoring=..., verbose=...)

grid_scores_ [list of named tuples] Contains scores for all parameter combinations in param_grid. Each
entry corresponds to one parameter setting. Each named tuple has the attributes:

• parameters, a dict of parameter settings

• mean_validation_score, the mean score over the cross-validation folds

• cv_validation_scores, the list of scores for each fold



best_estimator_ [estimator] Estimator that was chosen by the search, i.e. estimator which gave highest score
(or smallest loss if specified) on the left out data. Not available if refit=False.

best_score_ [float] Score of best_estimator on the left out data.

best_params_ [dict] Parameter setting that gave the best results on the hold out data.

scorer_ [function] Scorer function used on the held out data to choose the best parameters for the model.

The parameters selected are those that maximize the score of the left out data, unless an explicit score is passed
in which case it is used instead.

If n_jobs was set to a value higher than one, the data is copied for each point in the grid (and not n_jobs times).
This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is
large and not enough memory is available. A workaround in this case is to set pre_dispatch. Then, the memory
is copied only pre_dispatch many times. A reasonable value for pre_dispatch is 2 * n_jobs.

ParameterGrid: generates all the combinations of a an hyperparameter grid.

sklearn.cross_validation.train_test_split(): utility function to split the data into a development
set usable for fitting a GridSearchCV instance and an evaluation set for its final evaluation.

sklearn.metrics.make_scorer(): Make a scorer from a performance metric or loss function.

__init__(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True,
cv=None, verbose=0, pre_dispatch=‘2*n_jobs’, error_score=’raise’)

Methods

__init__(estimator, param_grid[, scoring, ...])
decision_function(*args, **kwargs) Call decision_function on the estimator with the best found parameters.
fit(X[, y]) Run fit with all sets of parameters.
get_params([deep]) Get parameters for this estimator.
inverse_transform(*args, **kwargs) Call inverse_transform on the estimator with the best found parameters.
predict(*args, **kwargs) Call predict on the estimator with the best found parameters.
predict_log_proba(*args, **kwargs) Call predict_log_proba on the estimator with the best found parameters.
predict_proba(*args, **kwargs) Call predict_proba on the estimator with the best found parameters.
score(X[, y]) Returns the score on the given data, if the estimator has been refit.
set_params(**params) Set the parameters of this estimator.
transform(*args, **kwargs) Call transform on the estimator with the best found parameters.

6.2 Analyzing Model Performance

learning_curves(X_train, y_train, X_test, y_test) Calculates performance of several models with varying training data sizes
model_complexity(X_train, y_train, X_test, ...) Calculates the performance of the model as model complexity increases.

boston_housing.analyzing_model_performance.learning_curves

boston_housing.analyzing_model_performance.learning_curves(X_train, y_train, X_test, y_test)
Calculates performance of several models with varying training data sizes Then plots learning and testing error
rates for each model



boston_housing.analyzing_model_performance.model_complexity

boston_housing.analyzing_model_performance.model_complexity(X_train, y_train, X_test, y_test)
Calculates the performance of the model as model complexity increases. Then plots the learning and testing
errors rates



Index

Symbols
__init__() (sklearn.grid_search.GridSearchCV method),

21
__init__() (sklearn.tree.DecisionTreeRegressor method),

18

D
DecisionTreeRegressor (class in sklearn.tree), 17

F
fit_model() (in module

boston_housing.evaluating_model_performance),
17

G
GridSearchCV (class in sklearn.grid_search), 19

L
learning_curves() (in module

boston_housing.analyzing_model_performance),
21

M
mean_squared_error() (in module sklearn.metrics), 16
model_complexity() (in module

boston_housing.analyzing_model_performance),
22

P
performance_metric() (in module

boston_housing.evaluating_model_performance),
16

S
shuffle_split_data() (in module

boston_housing.evaluating_model_performance),
14

T
train_test_split() (in module sklearn.cross_validation),

14

23


	Statistical Analysis and Data Exploration
	Evaluating Model Performance
	Analyzing Model Performance
	Model Prediction
	References
	Software
	Index

