Main Idea: Find the parameters for a line that partitions a data set.
General Approach (MLIA: p. 84)
- Collect Data: any method
- Prepare Data: Convert to numeric data if needed.
- Analyze: Any method.
- Train: Find the optimal coefficients to classify the data.
- Use: Given new data, classify it based on the previously classified data.
Pros, Cons, and Data Types
Pros:- Computationally Cheap
- Easy to implement
- Easy to interpret
Cons:- Succeptible to overfitting
- Not always accurate
Data Types:- Numeric Values
- Nominal Values