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The repository for the source of this document is here.

This is Project Two from Udacity’s Machine Learning Nanodegree program. It uses the UCI Student Performance
data-set to model the factors that predict the likelihood that a student will pass his or her final exam. The project
begins with an exploration of the data to understand the feature and target variables, followed by the selection of three
machine-learning algorithms to potentially model the student-performance. Finally one of the models is chosen and
the optimal parameters discovered using an exhaustive grid-search.

1 Classification vs Regression

Identifying students who might need early intervention is a classification problem as you are sorting students into
classes (needs intervention, doesn’t need intervention) rather than trying to predict a quantitative value.

https://github.com/necromuralist/student_intervention
https://archive.ics.uci.edu/ml/datasets/Student+Performance
https://archive.ics.uci.edu/ml/datasets/Student+Performance


2 Exploring the Data

Statistic Value

Total number of students 395
Number of students who passed 265
Number of students who failed 130
Number of features 30
Graduation rate of the class 67.09%

2.1 Passed

The target variable is ‘passed’.

yes no
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pr
op

or
tio

n

Proportion of Passing Students

As noted above, 67% of the students passed.

3 Preparing the Data

In this section, we will prepare the data for modeling, training and testing.

3.1 Identify feature and target columns

The target (as noted previously) is the ‘passed’ column. Here I’ll list the feature columns to get an idea of what’s
there.



Variable Description Data Values

Dalc workday alcohol consumption 1, 2, 3, 4, 5
Fedu father’s education 0, 1, 2, 3, 4
Fjob father’s job at_home, health, other, services, teacher
Medu mother’s education 0, 1, 2, 3, 4
Mjob mother’s job at_home, health, other, services, teacher
Pstatus parent’s cohabitation status A, T
Walc weekend alcohol consumption 1, 2, 3, 4, 5
absences number of school absences 0 ... 75
activities extra-curricular activities no, yes
address student’s home address type R, U
age student’s age 15, 16, 17, 18, 19, 20, 21, 22
failures number of past class failures 0, 1, 2, 3
famrel quality of family relationships 1, 2, 3, 4, 5
famsize family size GT3, LE3
famsup family educational support no, yes
freetime free time after school 1, 2, 3, 4, 5
goout going out with friends 1, 2, 3, 4, 5
guardian student’s guardian father, mother, other
health current health status 1, 2, 3, 4, 5
higher wants to take higher education no, yes
internet Internet access at home no, yes
nursery attended nursery school no, yes
paid extra paid classes within the course subject (Math or Portuguese) no, yes
reason reason to choose this school course, home, other, reputation
romantic within a romantic relationship no, yes
school student’s school GP, MS
schoolsup extra educational support no, yes
sex student’s sex F, M
studytime weekly study time 1, 2, 3, 4
traveltime home to school travel time 1, 2, 3, 4

3.2 Preprocess feature columns

Some Machine Learning algorithms (e.g. Logistic Regression) require numeric data so the columns with string-data
need to be transformed. The columns in this data-set that had ‘yes’ or ‘no’ values had the values converted to 1
and 0 respectively. Those columns that had other kinds of categorical data were transformed into dummy-variable
columns.

In addition, the target data was also changed so that instead of ‘yes’ and ‘no’ values it contained only ‘1’ and ‘0’ values.

• Original Feature Columns: 30

• With Dummies: 48

With dummy variables there are now 18 more columns in the feature data.

3.3 Split data into training and test sets

Next the data was shuffled and then split into training and testing sets.



Set Count

Training Instances 300
Test Instances 95

4 Training and Evaluating Models

4.1 Logistic Regression

The first model I chose was Logistic Regression. Logistic regression is a linear classification model that is useful
when the target variable is categorical and the feature variables are numeric (Peng C., et al, 2002). If the features
are categorical then they have to be converted to discrete numeric values prior to use. Logistic Regression has the
advantage of being computationally cheap, reasonable to implement, and is interpretable but has the disadvantage
that it is prone to underfitting (Harrington, 2012).

I chose this model for three primary reasons:

• Its coefficients are interpretable so besides predicting whether a student is at risk, factors that are most influ-
ential in determining students who are at risk can be identified

• It suports ridge regression, including lasso regression which might help reduce the number of variables in the
data set, both to aid interpretation and improve performance

• It is well understood/well studied

Since it is a linear model it performs best when the data is linearly separable, which makes it a complement to
Random Forests, the next model I chose.

4.2 Random Forests

Random Forests are ensemble learners that combine predictions from multiple decision trees.

Decision Trees have several advantages including:

• they are interpretable

• they can sometimes fit complex data more easily than linear models

• they don’t require dummy variables.

They are, however, generally not as accurate (James G. et al., 2013). Random Forests overcome the failings of the
individual Decision Trees using two methods:

• training each tree on a separate data set that is created by re-sampling with replacement from the original
training set ( bagging) which improves the accuracy of the forest over that of an individual tree.

• each tree in the forest uses a random sub-set of the features when deciding on a split so that there is sufficient
diversity in the forest to improve reliability

The predicted output for the features is created by taking an average of the predictions given by the trees.

Random forests, like decision trees, can be used for either classification or regression, but the trade-off for their
improved accuracy is that the ensemble is not as directly interpretable as the individual decision trees are. Decision
Trees, and thus Random Forests, don’t assume linear separability and can perform better than linear models when
the data isn’t linearly separable, but may not do as well in the cases where the linear model is appropriate (James G.
et al., 2013), thus, given the number of variables I thought that it might be more effective on this data set in the event
that Logistic Regression cannot model the data well.

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier


4.3 K-Nearest Neighbors

My final predictor used K-Nearest Neighbors (KNN) classification. It is a fairly straight-forward method that doesn’t
build a model in the sense that the other two methods do. Instead KNN stores the training data and when asked to
make a prediction finds the k number of points in the training data that are ‘closest’ to the input and calculates then
probability of a classification (say y=1) as the fraction of the k-neighbors that are of that class. Thus if k=4 and three
of the chosen neighbors are classified as 1 then the predicted class will be 1, because the majority of the neighbors
were 1.

Because KNN doesn’t build a model the way the other two classifiers do, it has the quickest training time but trades
this for the longest prediction times.

Unlike Logistic Regression, KNN doesn’t require linear separability and unlike some other methods also makes
no assumption about the distribution of the data (it is non-parametric). This makes KNN more flexible, but how
accurate it is depends on the choice of k. If k is too small it will tend to overfit the training data and if k is too large,
it will become too rigid. Besides the difficulty in choosing k, because it is non-parametric it’s not possible to inspect
the model to decide which features are important and it needs more data to be accurate (James G., et al., 2013).

I thought that KNN might be a good non-parametric alternative to Logistic Regression since the data comes from
students attending two schools in Portugal which might make the instances more similar than dissimilar, the ‘nearest
neighbor’ method was conceptually appropriate and it is different enough in approach that it might improve on the
other two methods should the separation of the classes be unusually difficult.

4.4 Performance Comparisons

To compare the models each was fit using their default parameters on the same sub-sets of the data. The sub-sets
were made of the first 100, 200, and 300 observations of the data. Times are in seconds and the ‘best’ scores are based
on their F1 scores, the weighted average of their prediction and recall scores.

Since the running times are based on my machine’s performance as much as that of the classifiers’ all times are the
minimum value from 100 repetitions (following the advice in the python timeit documentation). The f1-scores are
the median values for the 100 repetitions.

Logistic Regression

Size Time (train) Time (predict) Train F1 Test F1

100 0.0011 0.0001 0.8702 0.6720
200 0.0025 0.0001 0.8333 0.7910
300 0.0029 0.0001 0.8075 0.8120

Best score and size of data-set that gave the best test score:

• best score: 0.81

• best size: 300

Random Forest Classifier

Size Time (train) Time (predict) Train F1 Test F1

100 0.0203 0.0011 0.9921 0.7049
200 0.0217 0.0012 0.9923 0.7302
300 0.0224 0.0012 0.9949 0.7937

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier
https://docs.python.org/2/library/timeit.html


Best score and size of data-set that gave the best test score:

• best score: 0.79

• best size: 300

K-Nearest Neighbors

Size Time (train) Time (predict) Train F1 Test F1

100 0.0004 0.0013 0.8244 0.7519
200 0.0005 0.0019 0.8099 0.7536
300 0.0007 0.0027 0.8491 0.7945

Best score and size of data-set that gave the best test score:

• best score: 0.79

• best size: 300

Summation

Classifier Score (f1 test) Training-Size Training-Time Prediction-Time

LogisticRegression 0.81 300 0.0029 0.0001
KNeighborsClassifier 0.79 300 0.0007 0.0027
RandomForestClassifier 0.79 300 0.0224 0.0012

It looks like all three did about equally well on the test-sets.

As expected, KNN had the shortest training time and the longest prediction time. Since the values are so small, I’ll
look at the ratios of the times next instead of the absolute times.

Training Times

Classifiers Ratio

LogisticRegression/KNeighborsClassifier 4.44
RandomForestClassifier/KNeighborsClassifier 34.35
RandomForestClassifier/LogisticRegression 7.74

The Random Forest classifier was 5-10 times slower than the Logistic Regression classifier, which was itself about 5
times slower than the KNN classifier when training the models.

Prediction Times

Classifiers Ratio

KNeighborsClassifier/LogisticRegression 19.74
KNeighborsClassifier/RandomForestClassifier 2.21
RandomForestClassifier/LogisticRegression 8.92

It looks like the Logistic Regression classifier was significantly faster than either the Random Forest classifier or
the K-Nearest Neighbors classifier - about 20 times faster than KNN and 5-10 times faster than the Random Forest
classifier.



F1 Prediction Scores (Test Set)

Classifiers Ratio

LogisticRegression/KNeighborsClassifier 1.02
KNeighborsClassifier/RandomForestClassifier 1
LogisticRegression/RandomForestClassifier 1.02

The three models seem to have been comparable once the training data reached 300 instances.

4.5 F1 Scores

Although I printed the tables for the F1 scores I will plot them here to take a closer look at them. The training-set
sizes for the plots ranged from 10 to 300, increasing in steps of 10.
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The Random Forest did well on the training set from the start, while the K-nearest Neighbor classifier and the Logis-
tic Regression classifier were erratic until just over 100 training instances. Neither K-Nearest Neighbors nor Logistic
Regression was able to do as well on the training set as Random Forests did, suggesting that they are underfitting the
data. Interestingly, with this particular split, training set sizes of 100 and 200 (which were used in the tables) appear
to have been anomalous with the KNN and Logistic Regression classifiers flipping their relative f1 scores.



Test Set
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Test Set F1 Scores by Training-Set Size
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All three classifiers did comparably once the training set was increased to 300 instances, but the Random Forest
Classifier shows larger fluctuations in the F1 score than the other classifiers, while the Logistic Regression classifier
seemed to be the most stable, and performed the best for most of the instance-counts.



4.6 Comparing Test vs Train Scores by Model

0 50 100 150 200 250 300
Training Set Size

0.0

0.2

0.4

0.6

0.8

1.0
F1

 S
co

re

LogisticRegression F1 Scores by Training-Set Size

Test
Train

The training and testing sets for the Logistic Regression seem to be converging around 0.8, suggesting the model is
underfitting and may not be complex enough for the data. Oddly, the test score is better than the training score after
about 250 training instances. Looking at the table above, the differences are fractional and might just be that the
larger training set has proportionally more difficult instances than the test-set.
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The K-Nearest Neighbors classifier seems to perform comparably to the Logistic Regression classifier, although the
two curves haven’t converged yet, suggesting that it might be improved with more data, although it will still underfit
the data.
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The Random Forest classifier doesn’t do better with the test data than the other two classifiers but is much better
with the training data, suggesting that it is currently overfitting, and might be improved with more data.

5 Choosing the Best Model

Based on the previous experiments I chose Logistic Regression as the classifier to use. Given the data available, all
three models have comparable F1 scores (on the test data) but the Logistic Regression classifier is the fastest for
both training and prediction when compared to K-Nearest Neighbor and Random Forests. In addition, the Logistic
Regression classifier offers readily interpretable coefficients and L1 regression to sparsify the data, allowing us to see
the most important of the variables when deciding who will pass their final exam.

Logistic Regression works by using optimization methods to find the best parameters for a function that calculates
the probability that a student’s attributes (e.g. age, school, etc.) predicts that he or she will pass the final exam. When
the Logistic Regression model is created, the parameters are adjusted to maximize the f1 score, a weighted average of
the model’s precision and recall.

Once the model is created, it is used to predict whether a student will pass the exam by multiplying the student’s
attributes by the model’s parameters and these products are summed and added to the intercept. The resulting sum
is then converted to a probability - if the probability is greater than 1

2 the prediction will be that the student passed
(passed=’yes’) otherwise it will be that the student did not pass (passed=’no’).

5.1 Fitting The Model

The Logistic Regression model was fit using sklearn’s GridSearchCV with 10 folds for the cross-validation. The
parameters tested were the penalty-type (l1 or l2), C - the inverse of the regularization strength (the smaller the



number the larger the penalty), and weights associated with each class.

The penalties refer to regularization penalties that shrink or eliminate variable-coefficients in the model. The l1
penalty refers to lasso regularization which causes some of the feature-variable coefficients to go to 0 if they don’t
contribute as much to the model as the other, more significant variables. The l2 penalty refers to ridge regression
which shrinks the coefficients but never pushes them all the way to 0. Since lasso regularization simplifies the model
it might seem that it would be preferable, but it will only outperform ridge regression if there are differences in
how much the variables contribute. If all the variables contribute equally to the model, then ridge regression will
outperform the lasso (James G. et al., 2013).

C is the inverse of the regularization strength. The stronger the regularization (and thus the smaller C is), the smaller
the coefficients in the model will be and for lasso the fewer the coefficients it will have. Shrinking the coefficients too
much or eliminating too many variables can weaken the model so how much regularization is needed is determined
here using cross-validation.

The weights used for the classes were either 1, ‘balanced’
�

number of samples
number of classes×<number of 0’s in y, number of 1’s in y>

�

, or 0.67 for
passed and 0.33 for didn’t pass.

The following is the outcome of fitting the Logistic Regression classifier using Grid Search with the parameters given.

Parameters

Parameter Value

penalty l1
C 0.09
class_weight

These are the parameters for the model that had the highest F1 score. The best scorer used l1 (lasso regularization)
suggesting that the features contribute unequally to the outcome. The amount of regularization used was fairly high
(C is the inverse of the amount of regularization, the smaller it is the more regularization there is) so the model
should be fairly sparse compared relative to the number of variables in the data set. Although it looks like there was
no class_weight set, this is because None was chosen, so the class weights were assumed to be 1.

Coefficients

Variable Description Coefficient Odds

Medu mother’s education 0.14 1.16
age student’s age 0.03 1.03
famrel quality of family relationships 0.03 1.03
Fedu father’s education 0.01 1.01
absences number of school absences -0.02 0.98
goout going out with friends -0.07 0.93
failures number of past class failures -0.46 0.63

These are the variables that remained in the best model after the regularization was applied, sorted by their
coefficient-values. The coefficients are log-odds so calculating e coe f f i c i ent gives you the increase in odds that the
student will graduate (Peng C. et al., 2002). If the odds are greater than one, then increasing the attribute associ-
ated with the coefficient will increase the probability that the student passed and if the odds are less than one, then
increasing the attribute associated with the coefficient will reduce the probability that the student passed.

Positive Contributions



Medu The predictor with the greatest positive effect in the model was the amount of education the student’s
mother received. According to the read-me file there are 5 levels.

Level Meaning

0 None
1 4th Grade
2 5th to 9th Grade
3 Secondary Education
4 Higher Education
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Looking at a plot of all the data, as the mother’s education-level goes up the proportion of those that pass goes up
relative to those that don’t pass, with a large jump from Kindergarten - 4th grade to 5th - 9th grade levels .

age This is the age of the student. It wasn’t immediately obvious why this would be a factor, assuming that the
students are all in the same grade, but a plot of the data showed that the ages range from 15 to 22, with the oldest
students not passing the final exam, and the 15-17 year olds being more proportionally represented among those who
passed than those who didin’t, possibly because the older students were held back and thus were lower-performers
to begin with.
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famrel According to the readme file famrel is a rating of the quality of family relations ranging form 1 (very bad)
to 5 (excellent).
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The plot seems to show that relations of above average (4 and 5) family-relations improved the likelihood of passing.

Fedu This is the student’s father’s education level. The levels are the same as Medu.
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Negative Contributions

These are variables that decrease the odds of a student passing as their values increase.

absences This is a straightforward count of the number of absences there were.
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The differences are not large, but the distribution for those that didin’t pass has a greater spread and at around 10
absences the distributions seem to cross over with the non-passing line raised above the passing line (indicating a
greater proportion of non-passing students).

goout This is how often the student goes out with friends. There are 5 levels from 1 (very low) to 5 (very high).

1 2 3 4 5
goout

0

20

40

60

80

100

co
un

t

Going Out vs Passing

passed
no
yes

It looks like going out more than the average has a negative effect on passing.

failures This is the most negative variable and represents the number of past class failures for a student. It ranges
from 0 to 4 with 4 meaning 4 or more failures.
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It looks like no student failed 4 or more classes before taking the final exam and there were more failing students
than passing students once there were any failures.

5.2 F1 score (Test Set)

The best F1 score for the Logistic Regression classifier was 0.86, which is a slight improvement over the default
Logistic Regression classifier used earlier which had an f1 of approximately 0.81 for the test set when trained with
300 training instances.
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