Transfer Learning Exercise
Table of Contents
Introduction
Most of the time you won't want to train a whole convolutional network yourself. Modern ConvNets training on huge datasets like ImageNet take weeks on multiple GPUs. Instead, most people use a pretrained network either as a fixed feature extractor, or as an initial network to fine tune.
In this notebook, you'll be using VGGNet trained on the ImageNet dataset as a feature extractor.
VGGNet is great because it's simple and has great performance, coming in second in the ImageNet competition. The idea here is that we keep all the convolutional layers, but replace the final fully-connected layer with our own classifier. This way we can use VGGNet as a fixed feature extractor for our images then easily train a simple classifier on top of that.
- Use all but the last fully-connected layer as a fixed feature extractor.
- Define a new, final classification layer and apply it to a task of our choice!
You can read more about transfer learning from the CS231n Stanford course notes.
Imports
# python
from collections import OrderedDict
from datetime import datetime
import os
# pypi
from dotenv import load_dotenv
from torch import nn
from sklearn.model_selection import train_test_split
from torch.utils.data.sampler import SubsetRandomSampler
import matplotlib
import numpy
import seaborn
import torch
import torch.optim as optimize
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as pyplot
# this project
from neurotic.tangles.data_paths import DataPathTwo
Plotting
get_ipython().run_line_magic('matplotlib', 'inline')
get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'retina'")
seaborn.set(style="whitegrid",
rc={"axes.grid": False,
"font.size": 8,
"font.family": ["sans-serif"],
"font.sans-serif": ["Latin Modern Sans", "Lato"],
"figure.figsize": (8, 6)},
font_scale=3)
Flower power
Here we'll be using VGGNet to classify images of flowers. We'll start, as usual, by importing our usual resources. And checking if we can train our model on the GPU.
Download the Data
Download the flower data from this link, save it in the home directory of this notebook and extract the zip file to get the directory flower_photos/
. Make sure the directory has this exact name for accessing data: flower_photos.
load_dotenv()
path = DataPathTwo(folder_key="FLOWERS")
print(path.folder)
for target in path.folder.iterdir():
print(target)
/home/hades/datasets/flower_photos /home/hades/datasets/flower_photos/.DS_Store /home/hades/datasets/flower_photos/train /home/hades/datasets/flower_photos/test /home/hades/datasets/flower_photos/LICENSE.txt
Check If CUDA Is Available
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(device)
cuda:0
CUDA is running out of memory and crashing so don't use CUDA.
device = "cpu"
print(device)
cpu
Load and Transform our Data
We'll be using PyTorch's ImageFolder class which makes is very easy to load data from a directory. For example, the training images are all stored in a directory path that looks like this:
root/class_1/xxx.png root/class_1/xxy.png root/class_1/xxz.png root/class_2/123.png root/class_2/nsdf3.png root/class_2/asd932_.png
Where, in this case, the root folder for training is flower_photos/train/
and the classes are the names of flower types.
Define Training and Test Data Directories
train_dir = path.folder.joinpath('train/')
test_dir = path.folder.joinpath('test/')
print(train_dir)
print(test_dir)
/home/hades/datasets/flower_photos/train /home/hades/datasets/flower_photos/test
Classes are folders in each directory with these names:
classes = ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips']
CLASS_COUNT = len(classes)
Transforming the Data
When we perform transfer learning, we have to shape our input data into the shape that the pre-trained model expects. VGG16 expects `224`-dim square images as input and so, we resize each flower image to fit this mold.
Load And Transform Data Using ImageFolder
VGG-16 Takes 224x224 images as input, so we resize all of them.
data_transform = transforms.Compose([transforms.RandomResizedCrop(224),
transforms.ToTensor()])
train_data = datasets.ImageFolder(train_dir, transform=data_transform)
test_data = datasets.ImageFolder(test_dir, transform=data_transform)
Print Out Some Data Stats
print('Num training images: ', len(train_data))
print('Num test images: ', len(test_data))
Num training images: 3130 Num test images: 540
VALIDATION_FRACTION = 0.2
indices = list(range(len(train_data)))
training_indices, validation_indices = train_test_split(
indices,
test_size=VALIDATION_FRACTION)
DataLoaders and Data Visualization
Define Dataloader Parameters
BATCH_SIZE = 20
NUM_WORKERS=4
train_sampler = SubsetRandomSampler(training_indices)
valid_sampler = SubsetRandomSampler(validation_indices)
Prepare Data Loaders
train_loader = torch.utils.data.DataLoader(train_data, batch_size=BATCH_SIZE,
sampler=train_sampler,
num_workers=NUM_WORKERS)
valid_loader = torch.utils.data.DataLoader(train_data, batch_size=BATCH_SIZE,
sampler=valid_sampler, num_workers=NUM_WORKERS)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size,
num_workers=num_workers, shuffle=True)
Visualize some sample data
obtain one batch of training images
dataiter = iter(train_loader)
images, labels = dataiter.next()
images = images.numpy() # convert images to numpy for display
Plot The Images In The Batch, Along With The Corresponding Labels
fig = pyplot.figure(figsize=(12, 10))
pyplot.rc("axes", titlesize=10)
for idx in numpy.arange(20):
ax = fig.add_subplot(2, 20/2, idx+1, xticks=[], yticks=[])
pyplot.imshow(numpy.transpose(images[idx], (1, 2, 0)))
ax.set_title(classes[labels[idx]])
Define the Model
To define a model for training we'll follow these steps:
- Load in a pre-trained VGG16 model
- "Freeze" all the parameters, so the net acts as a fixed feature extractor
- Remove the last layer
- Replace the last layer with a linear classifier of our own
/Freezing simply means that the parameters in the pre-trained model will not change during training.**
Load the pretrained model from pytorch
vgg16 = models.vgg16(pretrained=True)
Print Out The Model Structure
print(vgg16)
VGG( (features): Sequential( (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU(inplace) (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (3): ReLU(inplace) (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (6): ReLU(inplace) (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (8): ReLU(inplace) (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (11): ReLU(inplace) (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (13): ReLU(inplace) (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (15): ReLU(inplace) (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (18): ReLU(inplace) (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (20): ReLU(inplace) (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (22): ReLU(inplace) (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (25): ReLU(inplace) (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (27): ReLU(inplace) (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (29): ReLU(inplace) (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (classifier): Sequential( (0): Linear(in_features=25088, out_features=4096, bias=True) (1): ReLU(inplace) (2): Dropout(p=0.5) (3): Linear(in_features=4096, out_features=4096, bias=True) (4): ReLU(inplace) (5): Dropout(p=0.5) (6): Linear(in_features=4096, out_features=1000, bias=True) ) )
Since we're only going to change the last (classification) layer, it might be helpful to see how many inputs and outpts it has.
print(vgg16.classifier[6].in_features)
print(vgg16.classifier[6].out_features)
4096 1000
So, the original model output 1,000 classes - we're going to need to change that to our five classes (eventually).
Freeze training for all "features" layers
for param in vgg16.features.parameters():
param.requires_grad = False
Final Classifier Layer
Once you have the pre-trained feature extractor, you just need to modify and/or add to the final, fully-connected classifier layers. In this case, we suggest that you replace the last layer in the vgg classifier group of layers.
This layer should see as input the number of features produced by the portion of the network that you are not changing, and produce an appropriate number of outputs for the flower classification task.
You can access any layer in a pretrained network by name and (sometimes) number, i.e. vgg16.classifier[6]
is the sixth layer in a group of layers named "classifier".
classifier = nn.Sequential(OrderedDict([
("Fullly Connected Classifier", nn.Linear(in_features=4096, out_features=CLASS_COUNT, bias=True)),
]))
vgg16.classifier[6] = classifier
after completing your model, if GPU is available, move the model to GPU
vgg16.to(device)
Specify Loss Function and Optimizer
Below we'll use cross-entropy loss and stochastic gradient descent with a small learning rate. Note that the optimizer accepts as input only the trainable parameters vgg.classifier.parameters()
.
Specify Loss Function (Categorical Cross-Entropy)
criterion = nn.CrossEntropyLoss()
specify optimizer (stochastic gradient descent) and learning rate = 0.001
optimizer = optimize.SGD(vgg16.classifier.parameters(), lr=0.001)
Training
Here, we'll train the network.
Exercise: So far we've been providing the training code for you. Here, I'm going to give you a bit more of a challenge and have you write the code to train the network. Of course, you'll be able to see my solution if you need help.
number of epochs to train the model
n_epochs = EPOCHS = 2
def train(model: nn.Module, epochs: int=EPOCHS, model_number: int=0,
epoch_offset: int=1, print_every: int=10) -> tuple:
"""Train, validate, and save the model
This trains the model and validates it, saving the best
(based on validation loss) as =model_<number>_cifar.pth=
Args:
model: the network to train
epochs: number of times to repeat training
model_number: an identifier for the saved hyperparameters file
epoch_offset: amount of epochs that have occurred previously
print_every: how often to print output
Returns:
filename, training-loss, validation-loss, improvements: the outcomes for the training
"""
optimizer = optimize.SGD(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
output_file = "model_{}_vgg.pth".format(model_number)
training_losses = []
validation_losses = []
improvements = []
valid_loss_min = numpy.Inf # track change in validation loss
epoch_start = epoch_offset
last_epoch = epoch_start + epochs + 1
for epoch in range(epoch_start, last_epoch):
# keep track of training and validation loss
train_loss = 0.0
valid_loss = 0.0
model.train()
for data, target in train_loader:
# move tensors to GPU if CUDA is available
data, target = data.to(device), target.to(device)
# clear the gradients of all optimized variables
optimizer.zero_grad()
# forward pass: compute predicted outputs by passing inputs to the model
output = model(data)
# calculate the batch loss
loss = criterion(output, target)
# backward pass: compute gradient of the loss with respect to model parameters
loss.backward()
# perform a single optimization step (parameter update)
optimizer.step()
# update training loss
train_loss += loss.item() * data.size(0)
model.eval()
for data, target in valid_loader:
# move tensors to GPU if CUDA is available
data, target = data.to(device), target.to(device)
# forward pass: compute predicted outputs by passing inputs to the model
output = model(data)
# calculate the batch loss
loss = criterion(output, target)
# update total validation loss
valid_loss += loss.item() * data.size(0)
# calculate average losses
train_loss = train_loss/len(train_loader.dataset)
valid_loss = valid_loss/len(valid_loader.dataset)
# print training/validation statistics
if not (epoch % print_every):
print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format(
epoch, train_loss, valid_loss))
training_losses.append(train_loss)
validation_losses.append(valid_loss)
# save model if validation loss has decreased
if valid_loss <= valid_loss_min:
print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(
valid_loss_min,
valid_loss))
torch.save(model.state_dict(), output_file)
valid_loss_min = valid_loss
improvements.append(epoch - 1)
return output_file, training_losses, validation_losses, improvements
def test(best_model):
criterion = nn.CrossEntropyLoss()
# track test loss
test_loss = 0.0
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
best_model.to(device)
best_model.eval()
# iterate over test data
for data, target in test_loader:
# move tensors to GPU if CUDA is available
data, target = data.to(device), target.to(device)
# forward pass: compute predicted outputs by passing inputs to the model
output = best_model(data)
# calculate the batch loss
loss = criterion(output, target)
# update test loss
test_loss += loss.item() * data.size(0)
# convert output probabilities to predicted class
_, pred = torch.max(output, 1)
# compare predictions to true label
correct_tensor = pred.eq(target.data.view_as(pred))
correct = (
numpy.squeeze(correct_tensor.numpy())
if not train_on_gpu
else numpy.squeeze(correct_tensor.cpu().numpy()))
# calculate test accuracy for each object class
for i in range(BATCH_SIZE):
label = target.data[i]
class_correct[label] += correct[i].item()
class_total[label] += 1
# average test loss
test_loss = test_loss/len(test_loader.dataset)
print('Test Loss: {:.6f}\n'.format(test_loss))
for i in range(10):
if class_total[i] > 0:
print('Test Accuracy of %5s: %2d%% (%2d/%2d)' % (
classes[i], 100 * class_correct[i] / class_total[i],
numpy.sum(class_correct[i]), numpy.sum(class_total[i])))
else:
print('Test Accuracy of %5s: N/A (no training examples)' % (classes[i]))
print('\nTest Accuracy (Overall): %2d%% (%2d/%2d)' % (
100. * numpy.sum(class_correct) / numpy.sum(class_total),
numpy.sum(class_correct), numpy.sum(class_total)))
output_file, training_losses, validation_losses, improvements = train(vgg16, print_every=1)
training_losses = []
validation_losses = []
improvements = []
valid_loss_min = numpy.Inf # track change in validation loss
for epoch in range(1, 3):
# keep track of training and validation loss
train_loss = 0.0
valid_loss = 0.0
vgg16.train()
for data, target in train_loader:
# move tensors to GPU if CUDA is available
data, target = data.to(device), target.to(device)
# clear the gradients of all optimized variables
optimizer.zero_grad()
# forward pass: compute predicted outputs by passing inputs to the model
output = vgg16(data)
# calculate the batch loss
loss = criterion(output, target)
# backward pass: compute gradient of the loss with respect to model parameters
loss.backward()
# perform a single optimization step (parameter update)
optimizer.step()
# update training loss
train_loss += loss.item() * data.size(0)
vgg16.eval()
for data, target in valid_loader:
# move tensors to GPU if CUDA is available
data, target = data.to(device), target.to(device)
# forward pass: compute predicted outputs by passing inputs to the model
output = vgg16(data)
# calculate the batch loss
loss = criterion(output, target)
# update total validation loss
valid_loss += loss.item() * data.size(0)
# calculate average losses
train_loss = train_loss/len(train_loader.dataset)
valid_loss = valid_loss/len(valid_loader.dataset)
# print training/validation statistics
print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format(
epoch, train_loss, valid_loss))
training_losses.append(train_loss)
validation_losses.append(valid_loss)
# save model if validation loss has decreased
if valid_loss <= valid_loss_min:
print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(
valid_loss_min,
valid_loss))
torch.save(vgg16.state_dict(), output_file)
valid_loss_min = valid_loss
improvements.append(epoch - 1)
test_loss = 0.0 class_correct = list(0. for i in range(5)) class_total = list(0. for i in range(5))
vgg16.eval() # eval mode
for data, target in test_loader:
if train_on_gpu: data, target = data.cuda(), target.cuda()
output = vgg16(data)
loss = criterion(output, target)
test_loss += loss.item()*data.size(0)
_, pred = torch.max(output, 1)
correct_tensor = pred.eq(target.data.view_as(pred)) correct = np.squeeze(correct_tensor.numpy()) if not train_on_gpu else np.squeeze(correct_tensor.cpu().numpy())
for i in range(batch_size): label = target.data[i] class_correct[label] += correct[i].item() class_total[label] += 1
test_loss = test_loss/len(test_loader.dataset) print('Test Loss: {:.6f}\n'.format(test_loss))
for i in range(5): if class_total[i] > 0: print('Test Accuracy of %5s: %2d%% (%2d/%2d)' % ( classes[i], 100 * class_correct[i] / class_total[i], np.sum(class_correct[i]), np.sum(class_total[i]))) else: print('Test Accuracy of %5s: N/A (no training examples)' % (classes[i]))
print('\nTest Accuracy (Overall): %2d%% (%2d/%2d)' % (
- * np.sum(class_correct) / np.sum(class_total),
np.sum(class_correct), np.sum(class_total)))
dataiter = iter(test_loader) images, labels = dataiter.next() images.numpy()
if train_on_gpu: images = images.cuda()
output = vgg16(images)
_, preds_tensor = torch.max(output, 1) preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())
fig = plt.figure(figsize=(25, 4)) for idx in np.arange(20): ax = fig.add_subplot(2, 20/2, idx+1, xticks=[], yticks=[]) plt.imshow(np.transpose(images[idx], (1, 2, 0))) ax.set_title("{} ({})".format(classes[preds[idx]], classes[labels[idx]]), color=("green" if preds[idx]==labels[idx].item() else "red"))